
Comonads, Applicative Functors, Monads
and other principled things

Tony Morris

November 25, 2014

If you’ve ever googled any of these. . .

You probably got an answer as sensible as this

Goals

Emphasis on the practical motivations for the specific
structures.
This is not about the details of concepts like monads.
This is about the process of reasoning that leads to their
discovery.

Goals

Emphasis on the practical motivations for the specific
structures.
This is not about the details of concepts like monads.
This is about the process of reasoning that leads to their
discovery.

Goals

Emphasis on the practical motivations for the specific
structures.
This is not about the details of concepts like monads.
This is about the process of reasoning that leads to their
discovery.

Goals

Nothing I tell you pertains to any specific programming language.
Java
Python
JavaScript
doesn’t matter, it still applies

Goals

There is no emphasis on a specific type of programming.
Functional
Dysfunctional
Object-disoriented
Dynamically-typed
Hacking it out like a drunk dog muffin
it’s all the same

Principled Things

What do we mean by a principled thing?
Principled reasoning gives rise to useful inferences.

p
p → q

∴ q

Principled Things

What do we mean by a principled thing?
Principled reasoning gives rise to useful inferences.

p
p → q

∴ q

Principled reasoning is already familiar
using Java/C# syntax

enum Order { LT , EQ , GT }

interface Compare <A> {
Order compare (A a1 , A a2);

}

We define this interface because
We can produce data structures to satisfy the interface.
We can define operations that function on all instances of the
interface.

Principled Reasoning

Data structures such as
integers
strings
list of elements where the elements can be compared

Principled Reasoning

Operations such as
List#sort

Tree#insert

List#maximum

Principled Things
Laws

We might also define constraints required of instances.

For example
if compare(x, y) == LT then compare(y, x) == GT

if compare(x, y) == EQ then compare(y, x) == EQ

if compare(x, y) == GT then compare(y, x) == LT

We will call these laws. Laws enable reasoning on abstract code.

Summary

a principled interface
law-abiding instances
derived operations

Principled Reasoning for Practical Application

We try to maximise instances and derived operations,
however, these two objectives often trade against each other.
For example, all things that can compare can also be tested
for equality, but not always the other way around1.
Obtaining the best practical outcome requires careful
application of principled reasoning.

1such as complex numbers

Some boring syntax issues

Java

enum Order { LT , EQ , GT }

interface Compare <A> {
Order compare (A a1 , A a2);

}

Haskell

data Order = LT | EQ | GT

class Compare a where
compare :: a -> a -> Order

Mappable
The interface

Java 8/C# with the addition of higher-kinded polymorphism

interface Mappable <T> {
<A, B> T map(Function <A, B> f, T<A> a);

}

Haskell

class Mappable t where
map :: (a -> b) -> t a -> t b

Mappable
The laws

Identity

x.map(z -> z) == x

map (\z -> z) x == x

Composition

x.map(z -> f(g(z))) == x.map(g). map(f)

map (\z -> f (g z)) x == map f (map g x)

Mappable

Instances of things that map2

List []

map :: (a -> b) -> [a] -> [b]

Reader (e ->)

map :: (a -> b) -> (e -> a) -> (e -> b)

There are an enormous number of instances.

2map is called Select in C#/LINQ.

Mappable
The derived operations

Map a constant value

mapConstant :: Mappable t => a -> t b -> t a
mapConstant a b = fmap (_ -> a) b

Map function application

mapApply :: Mappable t => t (a -> b) -> a -> t b
mapApply f a = fmap (\g -> g a) f

The set of derived operations is relatively small.

Mappable
Summary

The more common name for Mappable is a functor.
We have seen:

The interface for a functor
The laws that the functor instances must satisfy
The instances of the functor interface
The operations derived from functor

?

Make sure we understand Mappable!

Monad
The interface

Java 8/C# with the addition of higher-kinded polymorphism

interface Monad <T> {
<A> T<A> join(T<T<A>> a);
<X> T<X> unit(X x);

}

Haskell

class Monad t where
join :: t (t a) -> t a
unit :: x -> t x

Monad

The monad interface has laws too.
The monad interface has strictly stronger requirements than
functor.

In other words, all structures that are monads, are also
functors.
However, not all structures that are functors, are also monads.

Therefore, there are fewer monad instances than functor
instances.

Monad
The instances

But still a very large amount
List

Reader ((->) e)

State s

Continuation r

Maybe/Nullable

Exception

Writer w

Free f

Monad
The operations

and lots of operations too
sequence :: [t a] -> t [a]

filterM :: (a -> t Bool) -> [a] -> t [a]

findM :: (a -> t Bool) -> [a] -> Maybe [a]

Monad
Some mythbusting

This is what monad is for.

A lawful interface.
Satisfied by lots of instances.
Gives rise to lots of useful operations.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Monad
Some mythbusting

Monad
for controlling side-effects.
make my program impure.
something blah something IO.
blah blah in $SPECIFIC_PROGRAMMING_LANGUAGE.
blah blah relating to $SPECIFIC_MONAD_INSTANCE.
Monads Might Not Matter, so use Actors insteada

Too much bullshizzles to continue enumerating.
ayes, seriously, this is a thing.

Comonad
The interface

Java 8 with the addition of higher-kinded polymorphism

interface Comonad <T> {
<A> T<T<A>> duplicate (T<A> a);
<X> X extract (T<X> x);

}

Haskell

class Comonad t where
duplicate :: t a -> t (t a)
extract :: t x -> x

Comonad

Like monad, comonad is
Another interface, with laws, instances and operations.
The co prefix denotes categorical dual.
Like monad, is strictly stronger than functor.
All comonads are functors.

Applicative Functor
The interface

Java 8/C# with the addition of higher-kinded polymorphism

interface Applicative <T> {
<A, B> T apply(T<Function <A, B>> f, T<A> a);
<X> T<X> unit(X x);

}

Haskell

class Applicative t where
apply :: t (a -> b) -> t a -> t b
unit :: x -> t x

Applicative Functor

Well blimey mate. Guess what?
It’s just another interface, with laws, instances and operations.
An applicative functor is

strictly stronger than functor. All applicatives are functors.
strictly weaker than monad. All monads are applicative.

Let’s take a step back

Summary

Monads, Comonads, Applicative Functors . . .
All just the names of common interfaces.

with many distinct and disparate instances.
with many derived operations.

Each making different trade-offs for differences in utility.

Utility

When might I use any of these interfaces?
The same reason we already use interfaces.

Begin with a simple principle and exploit its diversity to abstract
away code repetition.

Ubiquity

If these interfaces are so useful, why aren’t they used everywhere?
familiarity
expressibility

Familiarity
Identifying the pattern

Turning a list of potentially null into a potentially null list

args(list)
result = new List;
foreach el in list

if(el == null)
return null;

else
result .add(el);

return result ;

Familiarity
Identifying the pattern

Applying a list of functions to a single value

args(list , t)
result = new List;
foreach el in list

result .add(el(t));
return result ;

Familiarity
Identifying the pattern

These expressions share structure

List (MaybeNull a) -> MaybeNull (List a)
List ((t ->) a) -> (t ->) (List a)
List (m a) -> m (List a)

Commonly called sequence.

Familiarity
Identifying the pattern again

Keep elements of a list matching a predicate with potential null

args(pred , list)
result = new List;
foreach el in list

ans = pred(el);
if(ans == null)

return null;
else if(ans)

result .add(el);
return result ;

Familiarity
Identifying the pattern again

Keep elements of a list matching a predicate with argument passing

args(pred , list , t)
result = new List;
foreach el in list

if(pred(el , t))
result .add(el);

return result ;

Familiarity
Identifying the pattern again

These expressions share structure

(a -> MaybeNull Bool) -> List a -> MaybeNull (List a)
(a -> (t ->) Bool) -> List a -> (t ->) (List a)
(a -> m Bool) -> List a -> m (List a)

Commonly called filter.

Familiarity
Identifying the pattern, once again

Find the first element matching a predicate with potential null

args(pred , list)
result = new List;
foreach el in list

ans = pred(el);
if(ans == null)

return null;
else if(ans)

return a;
return null;

Familiarity
Identifying the pattern, once again

Find the first element matching a predicate with argument passing

args(pred , list , t)
foreach el in list

ans = pred(el , t);
if(ans)

return true;
return false;

Familiarity
Identifying the pattern, once again

These expressions share structure

(a -> MaybeNull Bool) -> List a -> MaybeNull Bool
(a -> (t ->) Bool) -> List a -> (t ->) Bool
(a -> m Bool) -> List a -> m Bool

Commonly called find.

Familiarity
Identifying the pattern, last time

Turn a list of lists into a list

args(list)
result = new List;
foreach el in list

result . append (el);
return result ;

Familiarity
Identifying the pattern, last time

Turn a potential null of potential null into a potential null

args(value)
if(value == null)

return null;
else

return value.get;

Familiarity
Identifying the pattern, last time

Apply to the argument, then apply to the argument

args(f, t)
return f(t, t);

Familiarity
Identifying the pattern

These expressions share structure

List (List a) -> List a
MaybeNull (MaybeNull a) -> MaybeNull a
(t ->) ((t ->) a) -> (t ->) a
m (m a) -> m a

Commonly called join.

Type systems and Expressibility Limits

Some type systems limit expression of abstraction.
Java
C#
F#

Type systems and Expressibility Limits

These type systems are limited in the kinds of interfaces that they
can describe.

The missing type system feature is called higher-kinded
polymorphism.

Type systems and Expressibility Limits

Some type systems render abstraction humanly intractable
a

JavaScript
Ruby
Python

athough some brave souls have tried

Type systems and Expressibility Limits

The likelihood of correctly utilising abstraction at the level of these
interfaces approaches zero very quickly.

Type systems and Expressibility Limits

So we enter this feedback loop
The programmer is limited by tools, and then the tools limit the
creative potential of the programmer.

The Parable of the listreverse project

Imagine, for a minute, a programming language that did not allow
the programmer to generalise on list element types . . .

The Parable of the listreverse project

. . . and if you wanted to reverse a list of bananas, you would solve
that problem specific to bananas.

The Parable of the listreverse project

But what if we then had to also reverse a list of oranges?
Well, we would copy and paste the previous code :)

The Parable of the listreverse project

But what if we then had to also reverse a list of oranges?
Well, we would copy and paste the previous code :)

The Parable of the listreverse project

Soon enough, there would be a listreverse project and contributors,
with all the different list reversals.

The Parable of the listreverse project

So, you asked. . .
Why don’t we use a programming environment that supports
reversal on any element type?

The Parable of the listreverse project

and you were told. . .
The listreverse project is doing just fine and is used in
many enterprise projects and has many contributors
successfully incorporating it into their solutions.

The Parable of the listreverse project

The reason
These interfaces are not exploited is due to unfamiliarity and tool
support that discourages exploitation providing the perception of
progress.

Mission

It is my mission is to change this and to help others exploit useful
programming concepts, so please ask me more about it!

