
Functional Programming for Business

NICTA Seminar Series

Tony Morris

A bit about me

Senior Software Engineer, NICTA
using functional programming for about 10 years in industry.
have done my time in the trenches e.g. IBM
former university lecturer; prefer sharing ideas in a more progressive context.
I have nothing to sell you. If you choose to do it wrong, I won’t “convince you”.
I’ll blow you out of the market instead.
my motivation is simple; to create more people with whom I can work.

A bit about me

Senior Software Engineer, NICTA
using functional programming for about 10 years in industry.
have done my time in the trenches e.g. IBM
former university lecturer; prefer sharing ideas in a more progressive context.
I have nothing to sell you. If you choose to do it wrong, I won’t “convince you”.
I’ll blow you out of the market instead.
my motivation is simple; to create more people with whom I can work.

NICTA functional programming

John Backus

In a 1977 Turing Award lecture, John Backus put forward the
question, Can We Be Liberated From the von Neumann

Machine?[Bac78]

Goals

Goals
Goals for this talk

discuss a concrete definition for Functional Programming (FP)
introduce the principles of FP
discuss a practical nomenclature to describe concepts related
to FP
become equipped with the tools to identify the hocus-pocus
around FP
have a bit of fun :)

Goals
Goals for this talk

discuss a concrete definition for Functional Programming (FP)
introduce the principles of FP
discuss a practical nomenclature to describe concepts related
to FP
become equipped with the tools to identify the hocus-pocus
around FP
have a bit of fun :)

Goals
Goals for this talk

discuss a concrete definition for Functional Programming (FP)
introduce the principles of FP
discuss a practical nomenclature to describe concepts related
to FP
become equipped with the tools to identify the hocus-pocus
around FP
have a bit of fun :)

Goals
Goals for this talk

discuss a concrete definition for Functional Programming (FP)
introduce the principles of FP
discuss a practical nomenclature to describe concepts related
to FP
become equipped with the tools to identify the hocus-pocus
around FP
have a bit of fun :)

Goals
Goals for this talk

discuss a concrete definition for Functional Programming (FP)
introduce the principles of FP
discuss a practical nomenclature to describe concepts related
to FP
become equipped with the tools to identify the hocus-pocus
around FP
have a bit of fun :)

What does FP mean?

functional programming is a simple and principled thesis.
from this thesis, many practical advantages follow.
the practical consequences do not define functional
programming.
all programs achieve the principle of FP to some extent.

What does FP mean?

functional programming is a simple and principled thesis.
from this thesis, many practical advantages follow.
the practical consequences do not define functional
programming.
all programs achieve the principle of FP to some extent.

What does FP mean?

functional programming is a simple and principled thesis.
from this thesis, many practical advantages follow.
the practical consequences do not define functional
programming.
all programs achieve the principle of FP to some extent.

What does FP mean?
Referential Transparency

Placing expression under test for referential transparency

result = expression (args)
. . .
arbitrary1 (result)
. . .
arbitrary2 (result)

Refactor the program —has the program changed?

. . .
arbitrary1 (expression (args))
. . .
arbitrary2 (expression (args))

What does FP mean?
Am I functional programming?

To what extent does my program exhibit referential transparency?
to what extent can I replace expressions with their values?
to what extent am I functional programming? [Wad92]

What does FP mean?
Am I functional programming?

To what extent does my program exhibit referential transparency?
to what extent can I replace expressions with their values?
to what extent am I functional programming? [Wad92]

What does FP mean?
Tools

FAQ #1
is (or is not) this programming language a “functional
programming language?” [Sab98]
I still do not know what one of these is.
However. . .

What does FP mean?
Tools

FAQ #1
is (or is not) this programming language a “functional
programming language?” [Sab98]
I still do not know what one of these is.
However. . .

What does FP mean?
Tools

FAQ #1
is (or is not) this programming language a “functional
programming language?” [Sab98]
I still do not know what one of these is.
However. . .

What does FP mean?
Tools

We might instead ask
to what extent do my tools (including programming languages)
provide support for me to exploit the principle and practical
consequences that arise from functional programming?

Principles of functional programming

Frege’s principle of compositionality [Jan01]
a program is the composition of its constituent programs.
modifying a program is the act of modifying the necessary
part.
the concept of a program part is well-formed and measurable
[Hug89].

Principles of functional programming

Frege’s principle of compositionality [Jan01]
a program is the composition of its constituent programs.
modifying a program is the act of modifying the necessary
part.
the concept of a program part is well-formed and measurable
[Hug89].

Principles of functional programming

Frege’s principle of compositionality [Jan01]
a program is the composition of its constituent programs.
modifying a program is the act of modifying the necessary
part.
the concept of a program part is well-formed and measurable
[Hug89].

Principles of functional programming

Achieving program composition
snake-oil sellers will point you at how to achieve program
composition.
or more likely, how to manage having failed to achieved it.

object-oriented hoo-haa
agile and lean and “oh look over there!”

functional programming is necessary to the goal of
composition.

Principles of functional programming

Achieving program composition
snake-oil sellers will point you at how to achieve program
composition.
or more likely, how to manage having failed to achieved it.

object-oriented hoo-haa
agile and lean and “oh look over there!”

functional programming is necessary to the goal of
composition.

Principles of functional programming

Achieving program composition
snake-oil sellers will point you at how to achieve program
composition.
or more likely, how to manage having failed to achieved it.

object-oriented hoo-haa
agile and lean and “oh look over there!”

functional programming is necessary to the goal of
composition.

Principles of functional programming

Example

if (p l a y e r . s c o r e > 12)
p l a y e r . s e t Sw i z z l e (1000) ;

else
p l a y e r . s e t Sw i z z l e (11) ;

refactor program

p l a y e r . s e t Sw i z z l e (p l a y e r . s c o r e > 12 ? 1000 : 11) ;

Principles of functional programming

functional programming is the extent to which this program
property holds.
pure functional programming is when this program property
always holds.

including I/O programs
database programs
multi-threaded programs
web applications

Principles of functional programming

functional programming is the extent to which this program
property holds.
pure functional programming is when this program property
always holds.

including I/O programs
database programs
multi-threaded programs
web applications

Consequences of functional programming

Reasoning
since our program expressions are referentially transparent, we
may reason about each program part independently of all the
others.
this idea is called equational reasoning.
equational reasoning gives to the ability to comprehend our
programs; small or large.

Consequences of functional programming

Reasoning
since our program expressions are referentially transparent, we
may reason about each program part independently of all the
others.
this idea is called equational reasoning.
equational reasoning gives to the ability to comprehend our
programs; small or large.

Consequences of functional programming

Reasoning
since our program expressions are referentially transparent, we
may reason about each program part independently of all the
others.
this idea is called equational reasoning.
equational reasoning gives to the ability to comprehend our
programs; small or large.

Consequences of functional programming

Requirements change
our program solution, at any level, is the composition of
smaller, discrete programs . . .
. . . only if referential transparency is preserved.
if a requirement changes, we need only change those
independent parts which correlate to that change.

Consequences of functional programming

Requirements change
our program solution, at any level, is the composition of
smaller, discrete programs . . .
. . . only if referential transparency is preserved.
if a requirement changes, we need only change those
independent parts which correlate to that change.

Consequences of functional programming

Requirements change
our program solution, at any level, is the composition of
smaller, discrete programs . . .
. . . only if referential transparency is preserved.
if a requirement changes, we need only change those
independent parts which correlate to that change.

Consequences of functional programming

Programs are sub-programs and can be reused
since programs are (sometimes provably) delineated from
others, the opportunity to reuse arises.
functional programming gives rise to exploration of principled
abstraction.

Consequences of functional programming

Programs are sub-programs and can be reused
since programs are (sometimes provably) delineated from
others, the opportunity to reuse arises.
functional programming gives rise to exploration of principled
abstraction.

Consequences of functional programming

Testing in isolation
since functions do not perform side-effects, they can be tested
in isolation.
we can perform testing using universal quantification
> ((x ++ y) ++ z == x ++ (y ++ z))
OK, pas sed 100 t e s t s .

Consequences of functional programming

Testing in isolation
since functions do not perform side-effects, they can be tested
in isolation.
we can perform testing using universal quantification
> ((x ++ y) ++ z == x ++ (y ++ z))
OK, pas sed 100 t e s t s .

Consequences of functional programming

Performance
if programs are made of functions, they may be rearranged
arbitrarily without altering the program outcome.
a compiler may rearrange a program structure (but not
outcome) to give optimal performance.
existing runtime compilers do this to a small extent e.g. Java
VM, .NET CLR

Consequences of functional programming

Performance
if programs are made of functions, they may be rearranged
arbitrarily without altering the program outcome.
a compiler may rearrange a program structure (but not
outcome) to give optimal performance.
existing runtime compilers do this to a small extent e.g. Java
VM, .NET CLR

Consequences of functional programming

Performance
if programs are made of functions, they may be rearranged
arbitrarily without altering the program outcome.
a compiler may rearrange a program structure (but not
outcome) to give optimal performance.
existing runtime compilers do this to a small extent e.g. Java
VM, .NET CLR

Consequences of functional programming

Proof by parametricity [Wad89]
functions give rise to proof techniques, such as parametricity.
parametricity is about deriving theorems from polymorphic
types.

Consequences of functional programming

Proof by parametricity [Wad89]
functions give rise to proof techniques, such as parametricity.
parametricity is about deriving theorems from polymorphic
types.

Consequences of functional programming
Parametricity

For example
Given a function with a type (List a -> List a), a reader can
immediately derive

Theorem
Every element in the result list appears in the input list.

Consequences of functional programming
Parametricity

Documentation
functions give rise to parametricity.
parametricity gives rise to proofy-carrying theorems.
proof is a reliable and efficient method of program code
comprehension.

Consequences of functional programming
Parametricity

Documentation
functions give rise to parametricity.
parametricity gives rise to proofy-carrying theorems.
proof is a reliable and efficient method of program code
comprehension.

Consequences of functional programming
Parametricity

Documentation
functions give rise to parametricity.
parametricity gives rise to proofy-carrying theorems.
proof is a reliable and efficient method of program code
comprehension.

Tying the knot

Why Functional Programming?
These reasons, and many more, are why all programming benefits
by being functional programming

and not dysfunctional programming.

Questions?

References

John Backus, Can programming be liberated from the von
neumann style?: a functional style and its algebra of programs,
Communications of the ACM 21 (1978), no. 8, 613–641.

John Hughes, Why functional programming matters, The
computer journal 32 (1989), no. 2, 98–107.

Theo MV Janssen, Frege, contextuality and compositionality,
Journal of Logic, Language and Information 10 (2001), no. 1,
115–136.
Amr Sabry, What is a purely functional language?, Journal of
Functional Programming 8 (1998), no. 01, 1–22.

Philip Wadler, Theorems for free!, Proceedings of the fourth
international conference on Functional programming languages
and computer architecture, ACM, 1989, pp. 347–359.

, The essence of functional programming, Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ACM, 1992, pp. 1–14.

