
Introduction to Functional Programming

Women Who Code, Brisbane, February 2018

Tony Morris

QFPL

http://qfpl.io/

Frequently Asked Questions

FAQ
How can I be notified of upcoming FP courses?

Subscribe to this mailing list
http://notify.qfpl.io/
Sign up to YOW! conference notifications

Do you do non-introductory FP courses?
Coming in 2018. Sign up to notifications.
Do you really get paid to do whatever you want in
Haskell?

Yes
We are hiring. Wanna play?

http://notify.qfpl.io/

Frequently Asked Questions

FAQ
How can I be notified of upcoming FP courses?

Subscribe to this mailing list
http://notify.qfpl.io/
Sign up to YOW! conference notifications

Do you do non-introductory FP courses?
Coming in 2018. Sign up to notifications.
Do you really get paid to do whatever you want in
Haskell?

Yes
We are hiring. Wanna play?

http://notify.qfpl.io/

Frequently Asked Questions

FAQ
How can I be notified of upcoming FP courses?

Subscribe to this mailing list
http://notify.qfpl.io/
Sign up to YOW! conference notifications

Do you do non-introductory FP courses?
Coming in 2018. Sign up to notifications.
Do you really get paid to do whatever you want in
Haskell?

Yes
We are hiring. Wanna play?

http://notify.qfpl.io/

Frequently Asked Questions

FAQ
How can I be notified of upcoming FP courses?

Subscribe to this mailing list
http://notify.qfpl.io/
Sign up to YOW! conference notifications

Do you do non-introductory FP courses?
Coming in 2018. Sign up to notifications.
Do you really get paid to do whatever you want in
Haskell?

Yes
We are hiring. Wanna play?

http://notify.qfpl.io/

me
In the early 2000s, I was working for IBM, on the Java
Development Kit . . .

me
navigating the principles of software engineering, I had one simple
thought . . .

me
surely there is a better way and someone smarter than
me has figured it out

me
I learned that yes, sound and applicable principles for software
engineering have been figured out

me
It is called Functional Programming

What is Functional Programming?

What does it mean?

Suppose the following program . . .

int wibble(int a, int b) {
counter = counter + 1;
return (a + b) * 2;

}

/* arbitrary code */

blobble(wibble(x, y), wibble(x, y));

and we refactor out these common expressions . . .

int wibble(int a, int b) {
counter = counter + 1;
return (a + b) * 2;

}

/* arbitrary code */

blobble(wibble(x, y) , wibble(x, y));

assign the expression to a value

int wibble(int a, int b) {
counter = counter + 1;
return (a + b) * 2;

}

int r = wibble(x, y);

/* arbitrary code */

blobble(r , r);

Did the program just change?

Yes, the program changed . . .

int wibble(int a, int b) {
counter = counter + 1;
return (a + b) * 2;

}

int r = wibble(x, y);

/* arbitrary code */

blobble(r, r);

Suppose this slightly different program . . .

int pibble(int a, int b) {
return (a + b) * 2;

}

/* arbitrary code */

globble(pibble(x, y), pibble(x, y));

and we refactor out these common expressions . . .

int pibble(int a, int b) {
return (a + b) * 2;

}

/* arbitrary code */

globble(pibble(x, y) , pibble(x, y));

assign the expression to a value

int pibble(int a, int b) {
return (a + b) * 2;

}

int r = pibble(x, y);

/* arbitrary code */

globble(r , r);

This time, did the program just change?

It’s the same program
For given inputs, the same outputs are given, with no observable
changes to the program

Functional Programming is the idea that
We can always replace expressions with a value, without
affecting the program behaviour

This property of expressions is called referential transparency.

Consequences
A commitment to Functional Programming has many immediate
consequences.

For example, no more mutable data structures

class Person {
var name: String
var address: Address

}

No more loops

for(int i = 0; i < list.length; i++)

No reading & writing files arbitrarily

contents1 = readFile("filename");
writeFile("filename", "the␣contents");
contents2 = readFile("filename");

So then, if all our familiar tools are taken away . . .
how do we then achieve these practical outcomes?

?
how do we design our data structures?
how do we write loops?
how do we read & write files?

Let’s start at a concrete example
How do I sum the integer values in a list?

Using a for loop

sum(list) {
var r = 0;
for(int i = 0; i < list.length; i++) {

r = r + list[i];
}
return r;

}

Using a for loop

sum(list) {
var r = 0;
for(int i = 0; i < list.length; i++) {

r = r + list[i] ;
}
return r;

}

Here is another way of looking at the problem

The sum of a list is . . .
if the list is empty, return 0

otherwise add the first element to the sum of the remainder of
the list

The sum of a list is . . .

sum ([6, 5, 9, 71, 3]) =
6 + sum (5, 9, 71, 3]) =
6 + 5 + sum ([9, 71, 3]) =
6 + 5 + 9 + sum ([71 , 3]) =
6 + 5 + 9 + 71 + sum ([3]) =
6 + 5 + 9 + 71 + 3 + sum ([]) =
6 + 5 + 9 + 71 + 3 + 0 =
94

Here is the Haskell source code

sum [] = 0
sum (first:rest) = first + sum rest

Why?
Why would we do this? What are the practical benefits?

Why FP?
the practical benefits are not always immediately obvious
this is especially true when given trivial examples, such as
summing a list
but is there a point to all this?
a benefit to throwing away familiar tools, and replacing them?

Why FP?
the practical benefits are not always immediately obvious
this is especially true when given trivial examples, such as
summing a list
but is there a point to all this?
a benefit to throwing away familiar tools, and replacing them?

Why FP?
the practical benefits are not always immediately obvious
this is especially true when given trivial examples, such as
summing a list
but is there a point to all this?
a benefit to throwing away familiar tools, and replacing them?

Why FP?
the practical benefits are not always immediately obvious
this is especially true when given trivial examples, such as
summing a list
but is there a point to all this?
a benefit to throwing away familiar tools, and replacing them?

. . .

Some general “handwavy” benefits are
an ability to reason about discrete programs (which may be
sub-programs)
an ability to compose sub-programs to make slightly less small
programs, indefinitely

Some general “handwavy” benefits are
an ability to reason about discrete programs (which may be
sub-programs)
an ability to compose sub-programs to make slightly less small
programs, indefinitely

What are the benefits of FP?
Although this question commands a considerable amount of work,
it is a seemingly endless rabbit hole, for which I have never found

the bottom . . .

What are the benefits of FP?
I am committed to helping others join me in exploring this question

