
An Intuition for List Folds

FunctionalConf, Bangalore, 2019

Tony Morris

Brisbane

Queensland

Brisbane east coast

QFPL <http://qfpl.io/>

FAQ

I have heard of these folds . . . left and right
What do they do?
How do I know when to use them?
Which one do I use?
Can I internalise how they work?

Lists

What, exactly is a list?

Lists

a list is either
a Nil construction, with no associated data
a Cons construction, associated with one arbitrary value, and
another list

And never, ever anything else

Lists

A List that holds elements of type a is constructed by either:
Nil :: List a

Cons :: a -> List a -> List a

Lists

a list declaration using Haskell

data List a = Nil | Cons a (List a)

Some examples of Lists

Haskell

Cons 12 Nil

printed

[12]

Some examples of Lists

Haskell

Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

printed

[’a’, ’b’, ’c’]

Some nomenclature

Naming conventions
Sometimes you will see Nil denoted []

and Cons denoted : whic used in infix position
like this 1:(2:(3:[]))

but this is the same data structure

Some nomenclature

Naming conventions
Sometimes you will see Nil denoted []

and Cons denoted : whic used in infix position
like this 1:(2:(3:[]))

but this is the same data structure

Some nomenclature

Naming conventions
Sometimes you will see Nil denoted []

and Cons denoted : whic used in infix position
like this 1:(2:(3:[]))

but this is the same data structure

Some nomenclature

Naming conventions
Sometimes you will see Nil denoted []

and Cons denoted : whic used in infix position
like this 1:(2:(3:[]))

but this is the same data structure

Folds

Left, Right, FileNotFound
You may have heard of right folds and left folds
Haskell: foldr, foldl

Scala: foldRight, foldLeft

C# (BCL): no right fold, Aggregate (kind of)

Folds

Left, Right, FileNotFound
You may have heard of right folds and left folds
Haskell: foldr, foldl

Scala: foldRight, foldLeft

C# (BCL): no right fold, Aggregate (kind of)

Folds

Developing intuition for folds
When do I know to use a fold?
When do I know which fold to use?
What do the fold functions actually do?

Folds

Developing intuition for folds
When do I know to use a fold?
When do I know which fold to use?
What do the fold functions actually do?

Folds

Developing intuition for folds
When do I know to use a fold?
When do I know which fold to use?
What do the fold functions actually do?

Developing intuition for folds

There is much effort toward answering these questions

Figure: right fold diagram

Developing intuition for folds

There is much effort toward answering these questions

Figure: left fold diagram

Developing intuition for folds

and terse explanations
the right fold does folding from the right and left fold, folding
from the left
choose the right fold when you need to work with an infinite
list

Developing intuition for folds

and terse explanations
the right fold does folding from the right and left fold, folding
from the left
choose the right fold when you need to work with an infinite
list

Developing intuition for folds

Unfortunately
some of these explanations are incomplete or incorrect

The Challenge

We seek an intuition that
Does not require a prior deep understanding of list folds
Goes far enough to leave us satisfied
Is not wrong

Goals

First things first
In practice, the foldl and foldr functions are very different.

So let us think about and discuss each separately.

foldl

The foldl function accepts three values:
1 f :: b -> a -> b
2 z :: b
3 list :: List a

to get back a value of the type b.

foldl :: (b -> a -> b) -> b -> List a -> b
B FoldLeft<A, B>(Func<B, A, B>, B, List<A>)

foldl

?
How does foldl take three values to that return value?

foldl

all left folds are loops

\f z list ->
var r = z
foreach (a in list)

r = f(r, a)
return r

foldl

all left folds are loops

\f z list ->
var r = z
foreach (a in list)

r = f (r, a)
return r

foldl

refactor some loops
let’s look at a real code example

foldl

all left folds are loops
Let’s sum the integers of a list

foldl

sum the integers of a list

\f z list ->
var r = z
foreach (a in list)

r = f (r, a)
return r

?

foldl

sum the integers of a list

\list ->
var r = 0
foreach (a in list)

r = + (r, a)
return r

Replace the values in the loop

foldl

sum the integers of a list

sum list = foldl (\r a -> (+) r a) 0 list
sum = foldl (+) 0

foldl

multiply the integers of a list

\f z list ->
var r = z
foreach (a in list)

r = f (r, a)
return r

?

foldl

multiply the integers of a list

\list ->
var r = 1
foreach (a in list)

r = * (r, a)
return r

Replace the values in the loop

foldl

multiply the integers of a list

product list = foldl (\r a -> (*) r a) 1 list
product = foldl (*) 1

foldl

all left folds are loops
Let’s reverse a list

foldl

reverse a list

\f z list ->
var r = z
foreach (a in list)

r = f (r, a)
return r

?

foldl

reverse a list

\list ->
var r = Nil
foreach (a in list)

r = flipCons (r, a)
return r

flipCons = \r a -> Cons a r

Replace the values in the loop

foldl

reverse a list

reverse list = foldl (\r a -> Cons a r) Nil list
reverse = foldl (flip Cons) Nil

foldl

all left folds are loops
Let’s compute the length of a list

foldl

length of a list

\f z list ->
var r = z
foreach (a in list)

r = f (r, a)
return r

?

foldl

length of a list

\list ->
var r = 0
foreach (a in list)

r = plus1 (r, a)
return r

plus1 = \r a -> r + 1

Replace the values in the loop

foldl

length of a list

length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+1)) 0

foldl

refactoring, intuition
a left fold is what you would write if I insisted you remove all
duplication from your loops
all left folds are exactly this loop
any question we might ask about a left fold, can be asked
about this loop

foldl

refactoring, intuition
a left fold is what you would write if I insisted you remove all
duplication from your loops
all left folds are exactly this loop
any question we might ask about a left fold, can be asked
about this loop

foldl

refactoring, intuition
a left fold is what you would write if I insisted you remove all
duplication from your loops
all left folds are exactly this loop
any question we might ask about a left fold, can be asked
about this loop

foldl

some observations
a left fold will never work on an infinite list
a correct intuition for left folds is easy to build on existing
programming knowledge (loop)

foldl

some observations
a left fold will never work on an infinite list
a correct intuition for left folds is easy to build on existing
programming knowledge (loop)

foldl

Folding to the left does a loop

foldr

The foldr function accepts three values:
1 f :: a -> b -> b
2 z :: b
3 list :: List a

to get back a value of the type b.

foldr :: (a -> b -> b) -> b -> List a -> b
B FoldRight<A, B>(Func<A, B, B>, B, List<A>)

foldr

?
How does foldr take three values to that return value?

foldr

constructor replacement
The foldr function performs constructor replacement.

The expression foldr f z list replaces in list:
Every occurrence of Cons (:) with f.
Any occurrence of Nil [] with z1.

1The Nil constructor may be absent —i.e. the list is an infinite list of Cons

foldr

constructor replacement?
suppose list = Cons A (Cons B (Cons C (Cons D Nil)))

the expression foldr f z list

produces f A (f B (f C (f D z)))

foldr

right folds replace constructors
Let’s multiply the integers of a list

foldr

multiply the integers of a list
Supposing
list = Cons 4 (Cons 5 (Cons 6 (Cons 7 Nil)))

foldr

multiply the integers of a list
Supposing
list = Cons 4 (Cons 5 (Cons 6 (Cons 7 Nil)))

?

foldr

multiply the integers of a list
let Cons = (*)

let Nil = 1

foldr

multiply the integers of a list
Supposing
list = (*) 4 ((*) 5 ((*) 6 ((*) 7 1)))

product list = foldr (*) 1 list
product = foldr (*) 1

foldr

right folds replace constructors
Let’s and (&&) the booleans of a list

foldr

and (&&) the booleans of a list
Supposing
list = Cons True (Cons True (Cons False (Cons True Nil)))

foldr

and (&&) the booleans of a list
Supposing
list = Cons True (Cons True (Cons False (Cons True Nil)))

?

foldr

and (&&) the booleans of a list
let Cons = (&&)

let Nil = True

foldr

and (&&) the booleans of a list
Supposing
list = (&&) True ((&&) True ((&&) False ((&&) True True)))

conjunct list = foldr (&&) True list
conjunct = foldr (&&) True

foldr

right folds replace constructors
Let’s append two lists

foldr

append two lists
Supposing
list1 = Cons A (Cons B (Cons C (Cons D Nil)))
list2 = Cons E (Cons F (Cons G (Cons H Nil)))

foldr

append two lists
Supposing
list1 = Cons A (Cons B (Cons C (Cons D Nil)))
list2 = Cons E (Cons F (Cons G (Cons H Nil)))

?

foldr

append two lists
let Cons = Cons

let Nil = list2

foldr

append two lists
Supposing
list1 = Cons A (Cons B (Cons C (Cons D list2)))
list2 = Cons E (Cons F (Cons G (Cons H Nil)))

append list1 list2 = foldr Cons list2 list1
append = flip (foldr Cons)

foldr

right folds replace constructors
Let’s map a function on a list

foldr

map a function (f) on a list
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

foldr

map a function (f) on a list
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

?

foldr

map a function (f) on a list
let Cons = \x -> Cons (f x)

let Nil = Nil

foldr

map a function (f) on a list
Supposing
consf x = Cons (f x)

list = consf A (consf B (consf C (consf D Nil)))

map f list = foldr (\x -> Cons (f x)) Nil list
map f = foldr (Cons . f) Nil

foldr

right folds replace constructors
Let’s flatten a list of lists

foldr

flatten a list of lists
Supposing
list = Cons lista (Cons listb (Cons listc (Cons listd Nil)))

foldr

flatten a list of lists
Supposing
list = Cons lista (Cons listb (Cons listc (Cons listd Nil)))

?

foldr

flatten a list of lists
let Cons = append

let Nil = Nil

foldr

flatten a list of lists
Supposing
list = append lista (append listb (append listc (append listd Nil)))

flatten list = foldr append Nil list
flatten = foldr append Nil

foldr

right folds replace constructors
Let’s filter a list on predicate

foldr

filter a list on predicate (p)

Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

foldr

filter a list on predicate (p)

Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

?

foldr

filter a list on predicate (p)

let Cons = \x -> if p x then Cons x else id

let Nil = Nil

foldr

filter a list on predicate (p)

Supposing
applyp x = if p x then Cons x else id

list = applyp A (applyp B (applyp C (applyp D Nil)))

filter p list = foldr (\x -> if p x then Cons x else id) Nil list
filter p = foldr (\x -> if p x then Cons x else id) Nil
filter p = foldr (\x -> bool id (Cons x) (p x)) Nil
filter p = foldr (bool id . Cons <*> p) Nil

foldr

right folds replace constructors
Let’s get the head of a list, or default for no head
:: a -> List a -> a

foldr

the head of a list, or default for no head
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

foldr

the head of a list, or default for no head
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

?

foldr

the head of a list, or default for no head
let Cons = \x _ -> x

let Nil = thedefault

foldr

the head of a list, or default for no head
Supposing
constant x _ = x

list = constant A (constant B (constant C (constant D thedefault)))

heador thedefault list = foldr constant thedefault list
heador thedefault = foldr constant thedefault
heador = foldr constant

foldr

right folds replace constructors
Let’s sequence a list of effects (f a) and produce an effect (f) of
list
:: Monad f => List (f a) -> f (List a)

foldr

list of effects (f a) to effect (f) of list
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

foldr

list of effects (f a) to effect (f) of list
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))

?

foldr

list of effects (f a) to effect (f) of list
let Cons
= \a b -> do { x <- a; y <- b; return (Cons x y) }

let Nil = return Nil

foldr

list of effects (f a) to effect (f) of list
Supposing
lift2cons a b = do { x <- a; y <- b; return (Cons a b)}

list = lift2cons A (lift2cons B (lift2cons C (lift2cons D return Nil)))

sequence list = foldr (lift2cons) (return Nil) list
sequence = foldr (lift2cons) (return Nil)

foldr

Observations
foldr may work on an infinite list.

There is no order specified, however, there is associativity.
Depends on the strictness of the given function.
Replaces the Nil constructor if it ever comes to exist.

The expression foldr Cons Nil leaves the list unchanged.
In other words, passing the list constructors to foldr produces
an identity function.

foldr

Observations
foldr may work on an infinite list.

There is no order specified, however, there is associativity.
Depends on the strictness of the given function.
Replaces the Nil constructor if it ever comes to exist.

The expression foldr Cons Nil leaves the list unchanged.
In other words, passing the list constructors to foldr produces
an identity function.

Summary

the key intuition
left fold performs a loop, just like we are familiar with
right fold performs constructor replacement

Summary

from this we derive some observations
left fold will never work on an infinite list
right fold may work on an infinite list
These observations are independent of specific programming
languages

Summary

from this we also solve problems
product = . . .

append = . . .

map = . . .

length = . . .

. . .

Summary

intuitively, this is what list folds do
foldl performs a loop
foldr performs constructor replacement

this intuition is precise and requires no footnotes

The End

Nil

