
Explaining List Folds
An easy explanation of the fold-left and fold-right functions

Tony Morris

Brisbane Functional Programming Group, 23 April 2013

Lists
data structure

List data structure

data List t = Nil | t : List t

foldl :: (b -> a -> b) -> b -> List a -> b

foldr :: (a -> b -> b) -> b -> List a -> b

Nil and List are often denoted []

Lists
examples

Examples of List values

1:2:3:Nil

1:(2:(3:Nil))

’x’:’y’:’z’:Nil

A:B:C:[]

Folds
folding left and right

We are going to be discussing the foldl and foldr functions
on cons lists.

In the Scala programming language, these are called
foldLeft and foldRight.

The C# programming language provides an approximation for
foldl called Aggregate1.

Our discussion is language-independent and so applies equally
to Haskell, Scala and more.

1there is no foldr equivalent as the structure is not a proper cons list

Folds
explanations

There are all types of explanations of list fold functions out there.

Folds
diagrams

Fold Diagrams

Folds
descriptions

Short, concise descriptions

foldl applies a function to a list, associating to the left.

\f z -> (f (f (f a z) b) c)

foldr applies a function to a list, associating to the right.

\f z -> (f a (f b (f c z)))

Folds
questions

But then I am hit with more questions

How does folding right start from the right but work on
infinite lists?

How do I recognise when it is appropriate to use a fold
function?

When do I choose to use one over the other?

Goals

Goals for today

Develop a robust and accurate description for the list fold
functions.

Infer answers to practical questions from this description.

Propose a tacit argument that you should use this description
when discussing with others.

Goals

First things first

In practice, the foldl and foldr functions are very different.

So let us think about and discuss each separately.

foldl

The foldl function is a machine that requires three values:

1 f :: b -> a -> b

2 z :: b

3 list :: List a

It will give you back a value of the type b.

foldl :: (b -> a -> b) -> b -> List a -> b

foldl

What does this machine do?

OK, so foldl takes three arguments.

But what does this machine do to those three arguments to
compute the return value?

foldl

A standard loop, exactly in a way in which we are familiar

\f z list ->

var r = z

foreach(e in list)

r = f(r, e)

return r

foldl
example —product

Really, is that all?

To compute the product of the list, let:

1 f = *

2 z = 1

foldl
example —product

Yes, that is all

product list =

var r = 1

foreach(e in list)

r = *(r, e)

return r

p r o d u c t l i s t =
f o l d l (*) 1 l i s t

foldl
example —reverse

Another example

To reverse a list, let:

1 f = \xs x -> x : xs

2 z = Nil

foldl
example —reverse

Reversing a cons list

reverse list =

var r = Nil

foreach(e in list)

r = :(e, r)

return r

r e v e r s e l i s t =
f o l d l (\ xs x −> x : xs) [] l i s t

foldl
observations

Observations about foldl

We might compute the length of a list with foldl.

We might compute the sum of a list with foldl.

Importantly, foldl will never work on an infinite list.

There is nothing more or less to foldl than what has just been
described.

foldr

The foldr function is a machine that requires three values2:

1 f :: a -> b -> b

2 z :: b

3 list :: List a

It will give you back a value of the type b.

foldr :: (a -> b -> b) -> b -> List a -> b

2similar to foldl, although the function’s arguments are swapped in order

foldr

What does the foldr machine do?

Like foldl, foldr takes three arguments.

But what this machine do to those three arguments?

A loop like foldl? Something else?

foldr

The foldr function performs constructor replacement.

The expression foldr f z list replaces in list:

1 Every occurrence of the cons constructor (:) with f.

2 Any occurrence of the nil constructor [] with z3.

3The nil constructor may be absent —an infinite list

foldr

Constructor Replacement?

Let list = A : (B : (C : (D : [])))

The expression foldr f z list

list = A ‘f‘ (B ‘f‘ (C ‘f‘ (D ‘f‘ z)))

foldr

example —append

Suppose we wish to append two lists

list1 = U : (V : (W : []))

list2 = X : (Y : (Z : []))

result = U : (V : (W : (X : (Y : (Z : [])))))

How might the foldr machine help us?

Is this a candidate problem for constructor replacement?

foldr

example —append

U : (V : (W : []))
X : (Y : (Z : []))

U : (V : (W : (X : (Y : (Z : [])))))

foldr

example —append

U : (V : (W : []))
X : (Y : (Z : []))

U : (V : (W : (X : (Y : (Z : [])))))

In list1:

replace (:) with (:)

replace [] with list2

foldr

example —append

How do we perform constructor replacement?

foldr ? ? ?

foldr

example —append

How do we perform constructor replacement?

foldr ? ? ?

On what are we performing constructor replacement?

foldr ? ? list1

foldr

example —append

How do we perform constructor replacement?

foldr ? ? ?

On what are we performing constructor replacement?

foldr ? ? list1

What are we replacing the [] constructor with?

foldr ? list2 list1

foldr

example —append

How do we perform constructor replacement?

foldr ? ? ?

On what are we performing constructor replacement?

foldr ? ? list1

What are we replacing the [] constructor with?

foldr ? list2 list1

What are we replacing the (:) constructor with?

foldr (:) list2 list1

foldr

example —append

append l i s t 1 l i s t 2 =
f o l d r (:) l i s t 2 l i s t 1

foldr

More examples

You can repeat this exercise for

map :: (a -> b) -> List a -> List b

filter :: (a -> Bool) -> List a -> List a

concat :: List (List a) -> List a

concatMap :: (a -> List b) -> List a -> List b

and many more

Try it!

foldr

Observations

foldr may work on an infinite list.

There is no order specified, however, there is associativity.
Depends on the strictness of the given function.
Replaces the [] constructor if it ever comes to exist.

The expression foldr (:) [] leaves the list unchanged.

In other words, passing the list constructors to foldr produces
an identity function.
A function that produces an identity, given constructors for a
data type, is called its catamorphism.
foldr is the list catamorphism.

Summary

foldl performs an imperative loop, just like we are familiar
with3.

foldl will never work on an infinite list.

foldr performs constructor replacement.

foldr may work on an infinite list.

foldr is the list catamorphism.

Everything discussed applies equally to all programming
languages.

