An Intuition for List Folds

A

LambdaConf, Boulder CO, 2018

Tony Morris

.~,=.===,‘L
T

()
c
IS

0
0

o

m

Queensland

- 3
o

A L

Y o3

7= -

7~
" @
N~

Brisbane east coast

Home Location People Projects Tall

7~
G, T queenone %™ @
N~

Queensland Functional Programming Lab

-
| 5™ | @
S -

Intro

Explain List Folds to Yourself, April 2013
In April 2013, BFPG had a chat about list folds

-
| 5™ | @
NP

Introduction

Today
@ we are doing a similar thing, with differences

pd
| DATA |
61

Introduction

Today
@ we are doing a similar thing, with differences

@ aiming to beginners, who have only had cursory experiences
with lists

pd
| DATA |
61

Introduction

Today
@ we are doing a similar thing, with differences

@ aiming to beginners, who have only had cursory experiences
with lists

@ being very explicit about the utility of the developed intuition,
and developing it further

7~
" @
N~

What is a list?
What, exactly is a list?

7~
" @
N~

a list is either
@ a Nil construction, with no associated data

@ a Cons construction, associated with one arbitrary value, and
another list

And never, ever anything else

pd
| DATA |
61

the shape of a list’s construction is
@ Nil :: List a

@ Cons :: a -> List a -> List a

7~
" @
N~

a list using C+#

interface List<A>{}
class Nil<A> : List<A> {}
class Cons<A> : List<A> { A head;

List<A> tail;

}

And some tricks (omitted) to enforce never ever anything else

7~
" @
N~

a list using Haskell

data List a = Nil | Comns a (List a)

never ever anything else is enforced in haskell

7~
" @
N~

Some examples of Lists

C#

new Cons<int >(12, new Nil<int >())

Haskell

Cons 12 Nil

printed

[12]

7~
" @
N~

Some examples of Lists

C#

new Cons<char>(’a’, new Cons<char>(’b’, new Cons<char>(’c’, new Nil<char>())))

Haskell

Cons ’a’ (Cons ’b’ (Comns ’c’ Nil))

printed

7~
" @
N~

Some nomenclature

Naming Schmaming

@ Sometimes you will see Nil denoted []

7~
" @
N~

Some nomenclature

Naming Schmaming
@ Sometimes you will see Nil denoted []

@ and/or Cons denoted : in an infix position

7~
" @
N~

Some nomenclature

Naming Schmaming
@ Sometimes you will see Nil denoted []
@ and/or Cons denoted : in an infix position
o like this 1:(2:(3:[1))

7~
" @
N~

Some nomenclature

Naming Schmaming
@ Sometimes you will see Nil denoted []
@ and/or Cons denoted : in an infix position
o like this 1:(2:(3:[1))

@ but this is the same data structure

7~
" @
N~

Ensure we all know what a list is

pd
| DATA |
61

Left, Right, FileNotFound
@ You may have heard of right folds and left folds

7~
" @
N~

Left, Right, FileNotFound
@ You may have heard of right folds and left folds
@ Haskell: foldr, foldl
Scala: foldRight, foldLeft
C# (BCL): no right fold, Aggregate (kind of)
C# (xsharpx): FoldRight, FoldLeft

7~
" @
N~

Developing intuition for folds

@ When do | know to use a fold?

7~
" @
N~

Developing intuition for folds
@ When do | know to use a fold?
@ When do | know which fold to use?

7~
" @
N~

Developing intuition for folds
@ When do | know to use a fold?
@ When do | know which fold to use?
@ What do the fold functions actually do?

7~
" @
N~

Developing intuition for folds

There is much effort toward answering these questions

foldr fz

N % f\‘f
1 3
RN AN
2" 2" f
3 Vs VAN
4 VAN /f\
5 [5 =z

Figure: right fold diagram

pd
| DATA |
61

Developing intuition for folds

There is much effort toward answering these questions

foldl £z

Figure: left fold diagram

pd
| DATA |
61

Developing intuition for folds

and terse explanations

@ the right fold does folding from the right and left fold, folding
from the left

7~
" @
N~

Developing intuition for folds

and terse explanations
@ the right fold does folding from the right and left fold, folding
from the left

@ choose the right fold when you need to work with an infinite
list

7~
" @
N~

Developing intuition for folds

Unfortunately

many of these explanations are misrepresentative, incomplete, or
wrong

7~
" @
N~

Goals

Goals for today

@ Develop a robust and accurate description and intuition for
each list fold function

@ Ask and answer practical questions, given this intuition

7~
" @
N~

Goals

First things first
In practice, the foldl and foldr functions are very different.

So let us think about and discuss each separately.

7~
" @
N~

foldl

The foldl function accepts three values:
Q@f :: b->a->0D
Q@z ::b
© list :: List a

to get back a value of the type b.

foldl :: (b ->a ->b) -=>b ->List a > b
B FoldLeft<A, B>(Func<B, A, B>, B, List<A>)

pd
| DATA |
61

foldl

How does foldl take three values to that return value?

pd
| DATA |
61

all left folds are loops

\f z list ->
var r = z
foreach(a in list)
r = f(r, a)
return r

7~
" @
N~

all left folds are loops

\f z list ->
var r = z
foreach(a in 1list)
r = f (r, a)
return r

7~
" @
N~

refactor some loops

let’s look at a real code example

switch to code example

7~
" @
N~

foldl

all left folds are loops

Let's sum the integers of a list

7~
" @
N~

sum the integers of a list

\f z list ->
var r = 2z
foreach(a in 1list)
r = f(r, a)
return r

7~
" @
N~

foldl

sum the integers of a list

\list ->
var r = 0
foreach(a in 1list)
r = +(r, a)
return r

Replace the values in the loop

7~
" @
N~

sum the integers of a list

sum list = foldl (\r a
sum = foldl (+) O

-> (+#) r a) 0 list

7~
" @
N~

multiply the integers of a list

\f z list ->
var r = 2z
foreach(a in 1list)
r = f(r, a)
return r

7~
" @
N~

foldl

multiply the integers of a list

\list ->
var r = 1
foreach(a in 1list)
r = % (r, a)
return r

Replace the values in the loop

7~
" @
N~

multiply the integers of a list

product list = foldl (\r a -> (¥) r a) 1 list
product = foldl (*) 1

7~
" @
N~

foldl

all left folds are loops

Let's reverse a list

7~
" @
N~

reverse a list

\f z list ->
var r = 2Z

foreach(a in 1list)

r = f (r,
return r

a)

7~
" @
N~

foldl

reverse a list

\list ->
var r = Nil
foreach(a in 1list)
r = flipCons (r, a)
return r

flipCons = \r a -> Cons a r

Replace the values in the loop

7~
" @
N~

reverse a list

reverse list = foldl (\r a -> Cons a r) Nil 1list
reverse = foldl (flip Coms) Nil

7~
" @
N~

foldl

all left folds are loops
Let's compute the length of a list

7~
" @
N~

length of a list

\f z list ->
var r = z

foreach(a in 1list)

r = f (r,
return r

a)

7~
" @
N~

foldl

length of a list

\list ->
var r = 0
foreach(a in 1list)
r = plusl (r, a)
return r

plusli = \r a -> r + 1

Replace the values in the loop

pd
| DATA |
61

length of a list

length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+1)) 0

7~
" @
N~

foldl

refactoring, intuition

@ a left fold is what you would write if | insisted you remove all
duplication from your loops

7~
" @
N~

foldl

refactoring, intuition

@ a left fold is what you would write if | insisted you remove all
duplication from your loops

@ all left folds are exactly this loop

7~
" @
N~

foldl

refactoring, intuition
@ a left fold is what you would write if | insisted you remove all
duplication from your loops

@ all left folds are exactly this loop

@ exactly

7~
" @
N~

foldl

some observations
@ a left fold will never work on an infinite list

pd
| DATA |
61

foldl

some observations
@ a left fold will never work on an infinite list

@ a correct intuition for left folds is easy to build on existing
programming knowledge (loop)

7~
|5 D
N~

Ensure we have developed intuition for left fold

pd
| DATA |
61

foldl

The foldr function accepts three values:
Q@Qf ::a->b->0D
@z :: Db
© list :: List a

to get back a value of the type b.

foldr :: (a->b ->b) -> b -> List a > b
B FoldRight<A, B>(Func<A, B, B>, B, List<A>)

pd
| DATA |
61

foldl

How does foldr take three values to that return value?

pd
| DATA |
61

constructor replacement ’

The foldr function performs constructor replacement.

The expression foldr f z list replaces in 1ist:
@ Every occurrence of Cons (:) with £.

@ Any occurrence of Nil [] with z!.

7~
" @
N~

!The Nil constructor may be absent —i.e. the list is an infinite list of Cons

constructor replacement?
@ suppose list = Cons A (Cons B (Cons C (Cons D Nil)))
@ the expression foldr f z list

@ produces f A (f B (£ C (£ D 2)))

7~
" @
N~

right folds replace constructors
Let's multiply the integers of a list

7~
" @
N~

multiply the integers of a list
Supposing

list = Cons 4 (Cons 5 (Cons 6 (Coms 7 Nil)))

7~
" @
N~

multiply the integers of a list

Supposing

list = Cons 4 (Cons 5 (Cons 6 (Cons 7 Nil)))

7~
" @
N~

multiply the integers of a list
(%)
1

@ let Cons

o let Nil

7~
" @
N~

multiply the integers of a list
Supposing
list = (*) 4 ((x) 5 ((x) 6 ((x) 7 1)))

product list = foldr (%) 1 list
product = foldr (%) 1

7~
" @
N~

right folds replace constructors
Let's and (&&) the booleans of a list

7~
" @
N~

and (&&) the booleans of a list
Supposing

list = Cons True (Cons True (Cons False (Cons True Nil)))

7~
" @
N~

and (&&) the booleans of a list
Supposing

list = Cons True (Cons True (Cons False (Cons True Nil)))

7~
" @
N~

and (&&) the booleans of a list
@ let Cons = (&&)

@ let Nil = True

7~
" @
N~

and (&&) the booleans of a list
Supposing

list = (&&) True ((&%) True ((&&) False ((&&)

True

True)))

conjunct 1list

foldr (&&) True 1list

conjunct = foldr (&&) True

7~
" @
N~

right folds replace constructors

Let's append two lists

7~
" @
N~

append two lists

Supposing

listl
list2

Cons A (Cons B (Cons C (Cons D Nil)))
Cons E (Cons F (Cons G (Cons H Nil)))

7~
" @
N~

append two lists

Supposing

listl
list2

Cons A (Cons B (Cons C (Cons D Nil)))
Cons E (Cons F (Cons G (Cons H Nil)))

7~
" @
N~

append two lists
@ let Cons = Cons

@ let Nil = 1list2

7~
" @
N~

append two lists

Supposing
listl = Cons A (Cons B (Cons C (Cons D 1list2)))
list2 = Cons E (Cons F (Cons G (Cons H Nil)))

append listl 1list2 = foldr Cons 1list2 listl
append = flip (foldr Cons)

7~
" @
N~

right folds replace constructors

Let's map a function on a list

7~
" @
N~

map a function (£) on a list

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

map a function (£f) on a list

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

map a function (£) on a list
@ let Cons = \x -> Cons (f x)
o let Nil = Nil

7~
" @
N~

map a function (£f) on a list

Supposing
consf x = Coms (f x)

list = consf A (consf B (consf C (consf D Nil)))

map f list = foldr (\x -> Cons (f x)) Nil list
map f = foldr (Comns . f) Nil

7~
" @
N~

right folds replace constructors

Let's flatten a list of lists

7~
" @
N~

flatten a list of lists

Supposing

list = Cons lista (Cons listb (Cons listc (Cons listd Nil)))

7~
" @
N~

flatten a list of lists

Supposing

list = Comns 1lista (Coms 1listb (Comns 1listc (Comns 1listd Nil)))

7~
" @
N~

flatten a list of lists
@ let Cons = append
@ let Nil = Nil

7~
" @
N~

flatten a list of lists

Supposing

list = append lista (append listb (append listc (append listd Nil)))

flatten list = foldr append Nil list
flatten = foldr append Nil

7~
" @
N~

right folds replace constructors

Let's filter a list on predicate

7~
" @
N~

filter a list on predicate (p)

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

filter a list on predicate (p)

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

filter a list on predicate (p)
@ let Cons = \x -> if p x then Cons x else id
@ let Nil = Nil

7~
" @
N~

filter a list on predicate (p)

Supposing

applyp x = if p x then Cons x else id

list = applyp A (applyp B (applyp C (applyp D Nil)))

filter
filter

filter foldr (bool id

Cons <*> p) Nil

p list = foldr (\x -> if p x then Cons x else id) Nil 1list
p = foldr (\x -> if p x then Cons x else id) Nil

filter p = foldr (\x -> bool id (Cons x) (p x)) Nil
P

7~
" @
N~

right folds replace constructors

Let's get the head of a list, or default for no head
::a -> List a -> a

7~
" @
N~

the head of a list, or default for no head

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

the head of a list, or default for no head

Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

the head of a list, or default for no head
@ let Cons = \x _ > x

@ let Nil = thedefault

7~
" @
N~

the head of a list, or default for no head

Supposing

constant x _ = x

list = constant A (constant B (constant C (constant D thedefault)))
heador thedefault 1list = foldr constant thedefault 1list
heador thedefault = foldr constant thedefault

heador = foldr constant

7~
" @
N~

right folds replace constructors

Let's sequence a list of effects (£ a) and produce an effect (f) of
list

:: Monad f => List (f a) -> f (List a)

7~
" @
N~

list of effects (£ a) to effect (f) of list
Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

list of effects (£ a) to effect (f) of list
Supposing

list = Cons A (Cons B (Cons C (Cons D Nil)))

7~
" @
N~

list of effects (£ a) to effect (f) of list

o let Cons
=\ab ->do { x <- a; y <~ b; return (Cons x y)

@ let Nil = return Nil

7~
" @
N~

list of effects (£ a) to effect (f) of list

Supposing
l1ift2cons a b = do { x <— a; y <- b; return (Cons a b)}

list = 1lift2cons A (lift2cons B (1lift2cons C (1lift2cons D return Nil)))

sequence list = foldr (lift2cons) (return Nil) list
sequence = foldr (lift2comns) (return Nil)

7~
" @
N~

Observations

@ foldr may work on an infinite list.
e There is no order specified, however, there is associativity.
o Depends on the strictness of the given function.
o Replaces the Nil constructor if it ever comes to exist.

7~
" @
N~

Observations

@ foldr may work on an infinite list.

e There is no order specified, however, there is associativity.
o Depends on the strictness of the given function.
o Replaces the Nil constructor if it ever comes to exist.

@ The expression foldr Cons Nil leaves the list unchanged.

e In other words, passing the list constructors to foldr produces

an identity function.

7~
" @
N~

the key intuition
o left fold performs a loop, just like we are familiar with

@ right fold performs constructor replacement

pd
| DATA |
61

from this we derive some observations
o left fold will never work on an infinite list
@ right fold may work on an infinite list

@ These observations are independent of specific programming
languages

7~
" @
N~

from this we also solve problems
product = ...

append

length

°
°
@ map = ...
°
°

7~
" @
N~

@ intuitively, this is precisely what list folds do

@ this intuition is precise and requires no footnotes

pd
| DATA |
61

THE END

pd
| DATA |
61

