
A Modern History of Lenses

Tony Morris

November 25, 2014

Goals

the motivation for lenses
the definition of and nomenclature for lenses
the problems encountered for lenses
the proposed solutions and recent developments
the current solution

Goals

the motivation for lenses
the definition of and nomenclature for lenses
the problems encountered for lenses
the proposed solutions and recent developments
the current solution

Goals

the motivation for lenses
the definition of and nomenclature for lenses
the problems encountered for lenses
the proposed solutions and recent developments
the current solution

Goals

the motivation for lenses
the definition of and nomenclature for lenses
the problems encountered for lenses
the proposed solutions and recent developments
the current solution

Goals

the motivation for lenses
the definition of and nomenclature for lenses
the problems encountered for lenses
the proposed solutions and recent developments
the current solution

Why Lenses?
the premise

We want to do programming
and anything but functional programming is completely insane.

Why Lenses?

If you accept that fact of matter
then you also accept that data types must be immutable.

Why Lenses?

OK let’s try that

data Street =
Street {

name :: String
-- , ...

}

Why Lenses?

data Employee =
Employee {

company :: Company
-- , ...

}

data Company =
Company {

address :: Address
-- , ...

}

data Address =
Address {

street :: Street
-- , ...

}

Why Lenses?

Then your team leader says to you
Please set employer’s street address to upper-case.

Why Lenses?

ARGH!

upperStreetFirst ::
Employee
-> Employee

upperStreetFirst e =
e {

company = (company e) {
address = (address (company e)) {

street = (street (address (company e))) {
name = map toUpper

(name (street (address (company e))))
}

}
}

}

Why Lenses?

Scala insists on repeating history’s mistakes

def upperStreetFirst (e: Employee): Employee =
e.copy(company = e. company .copy(

address = e. company . address .copy(
street = e. company . address . street .copy(

name = e. company . address . street .name.
map(_. toUpper)

)
)

)

Why Lenses?

We must subsume dysfunctional programming
because crushing victory is the best kind.

(company.address.street.name %= toUpper) e

We need lenses.

Why Lenses?

We must subsume dysfunctional programming
because crushing victory is the best kind.

(company.address.street.name %= toUpper) e

We need lenses.

What is a Lens?

Lens is a data structure

data Lens target field =
Lens {

get :: target -> field
, set :: target -> field -> target
}

What is a Lens?

With three laws
get lens (set lens t f) == f

set lens (get lens t) t == t

set lens (set lens t f) f’ == set lens t f’

What is a Lens?
For example

Formerly

company :: Employee -> Company
address :: Company -> Address
street :: Address -> Street
name :: Street -> String

What is a Lens?
For example

Becomes

company :: Employee ‘Lens ‘ Company
address :: Company ‘Lens ‘ Address
street :: Address ‘Lens ‘ Street
name :: Street ‘Lens ‘ String

What is a Lens?
Lenses do lots of interesting things

Lenses can compose to a new Lens

(.) :: (a ‘Lens ‘ b) -> (b ‘Lens ‘ c) -> (a ‘Lens ‘ c)

company :: Employee ‘Lens ‘ Company
address :: Company ‘Lens ‘ Address
company . address :: Employee ‘Lens ‘ Address

What is a Lens?

Lens comes in a small variety of formulations

data Lens target field =
Lens {

getset :: target -> (field -> target , field)
}

What is a Lens?

Twan van Laarhoven lens

data Lens target field =
Lens {

run :: forall f. Functor f =>
(field -> f field) -> (target -> f target)

}

What is a Lens?

We can derive functions from Lens

-- modify the current field of a target
(%=) :: Lens target field -> (f -> f) -> t -> t
Lens g s %= k =

s <*> k . g

What is a Lens?

At this point, subsumption is achieved
We can do at least as well as dysfunctional programming

(company.address.street.name %= toUpper) e

We have won.
We have won at winning.

Problem?

But subsuming archaic ideas is not a noble goal
Can we do better? What other problems exist? Can we win
winning against winning?

Problem?

JSON

data Json =
JNull
| JNumber Double
| JArray [Json]
| JObject [(Str , Json)]
-- ...

Please set the object at "key" in the first array value to
null.

Problem?

JSON

JArray [JObject [("key", JNumber 7)], JNu mber 4]

JArray [JObject [("key", JNumber 7)], JNu ll]

Problem?

But what if
We don’t have an array?
The array does not have a first value?
The first value is not an object?
The object does not have a "key"?

We need partiality in our lenses.

Problem?

But what if
We don’t have an array?
The array does not have a first value?
The first value is not an object?
The object does not have a "key"?

We need partiality in our lenses.

Partiality

Partial Lens

data PartialLens target con =
PartialLens (target -> Maybe (con -> target , con))

Partial Lens

For example

jArray ::
PartialLens JSON [Json]

jArray =
PartialLens (\j ->

case j of JArray a ->
Just (JArray , a)

_ ->
Nothing

)

Partial Lens

However
This structure violates many of our desirable lens properties that
we had come to rely on. Our three laws do not translate.

The Polymorphic Update problem

Suppose we have this structure

data StringAnd a =
StringAnd String a

The Polymorphic Update problem

And two values such as

aLens :: Lens (StringAnd a) a
aLens = ...

value :: StringAnd [Int]
value = StringAnd "abc" [1 ,5 ,10 ,100]

The Polymorphic Update problem

And we need to modify the [Int] field to a String. However,

(%=) ::
Lens target field ->
(field -> field) ->
(target -> target)

(%=) ::
Lens (StringAnd a) a ->
(a -> a) ->
(StringAnd a -> StringAnd a)

The Polymorphic Update problem

We want to polymorphically update the field

(%=) aLensPoly ::
(field -> newfield) ->
(StringAnd field -> StringAnd newfield)

Solutions

The Theory of Lenses
There have been many efforts to find a unifying theory of lenses to
address the practical problems that we have identified.

An inexhaustive list follows.

Solutions

data-lens
Started in 2008 by Edward Kmett; maintained by Russ
O’Connor and me.
Hit walls with doing polymorphic update and partiality when
experimenting.
Mostly abandoned now due to subsumption. The solution was
ultimately found.

Solutions

data-lens
Started in 2008 by Edward Kmett; maintained by Russ
O’Connor and me.
Hit walls with doing polymorphic update and partiality when
experimenting.
Mostly abandoned now due to subsumption. The solution was
ultimately found.

Solutions

data-lens
Started in 2008 by Edward Kmett; maintained by Russ
O’Connor and me.
Hit walls with doing polymorphic update and partiality when
experimenting.
Mostly abandoned now due to subsumption. The solution was
ultimately found.

Solutions

fclabels
Started in 2009 by Sebastian Visser.
Originally only resolved the fundamental problems addressed
by lenses.
Now supports polymorphic update, but partiality is
problematic.

Solutions

fclabels
Started in 2009 by Sebastian Visser.
Originally only resolved the fundamental problems addressed
by lenses.
Now supports polymorphic update, but partiality is
problematic.

Solutions

fclabels
Started in 2009 by Sebastian Visser.
Originally only resolved the fundamental problems addressed
by lenses.
Now supports polymorphic update, but partiality is
problematic.

Solutions
mubbip-woo!

Asymmetric Lenses in Scala
A paper in 2012 by me.
An effort to invite discussion and improvements outside of
Haskell.
Discussion flourished, but Scala and "improvements" remain
as elusive as yowies.

Solutions
mubbip-woo!

Asymmetric Lenses in Scala
A paper in 2012 by me.
An effort to invite discussion and improvements outside of
Haskell.
Discussion flourished, but Scala and "improvements" remain
as elusive as yowies.

Solutions
mubbip-woo!

Asymmetric Lenses in Scala
A paper in 2012 by me.
An effort to invite discussion and improvements outside of
Haskell.
Discussion flourished, but Scala and "improvements" remain
as elusive as yowies.

Solutions

Lenses in Scalaz
scalaz.{Lens, PLens, IndexedLens, IndexedPLens}

Polymorphic update, but still partiality eludes us, like yowies.

Solutions

Lenses in Scalaz
scalaz.{Lens, PLens, IndexedLens, IndexedPLens}

Polymorphic update, but still partiality eludes us, like yowies.

The Solution

Control.Lens

type Lens s t a b =
Functor f =>
(a -> f b) -> s -> f t

Twan van Laarhoven lens representation
Polymorphic update
but. . . Partiality? Multiple update?

The Solution

Control.Lens.Prism

type Prism s t a b =
(Applicative f, Choice p) =>
p a (f b) -> p s (f t)

Solves partiality.
Importantly, is principled.
Gives rise to diverse practical consequences.
No more hacks or hitting walls!

The Solution

Control.Lens.Traversal

type Traversal s t a b =
Applicative f =>
(a -> f b) -> s -> f t

View and update multiple values.
Fold to only view multiple values.

The Solution

and it gets interesting. . .
These structures are just functions.
A Fold is a Traversal.
A Prism is a Traversal.
They are all a Lens.
They all compose with (.) (regular function composition).

The Solution

and even more and more interesting. . .
But let’s leave it here :)

