
Monad Transformers

Brisbane Functional Programming Group, June 2017

Tony Morris

The Plan

The outline of the journey1:
Remind ourselves:

What is a functor?
What is a monad?

What is a monad transformer?
Why might I use a monad transformer?

1We will be approximating at times to make the point

Functor

A functor F is given by the function:

(a -> b) -> (F a -> F b)

lifts a unary function into an environment F

Functor Haskell

Functor using Haskell syntax

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

Functor Examples

Examples of Functor instances
The list functor maps a function on head of each cons cell:

(a -> b) -> ([] a -> [] b)
(a -> b) -> ([a] -> [b])

The maybe functor maps a function on Just:

(a -> b) -> (Maybe a -> Maybe b)

Functor Examples in Haskell

Examples of Functor instances using Haskell syntax

instance Functor [] where
fmap f =

foldr ((:) . f) []

instance Functor Maybe where
fmap f =

maybe Nothing (Just . f)

instance Functor ((->) t) where
fmap f g =

\x -> f (g x)

Monad

A monad F is given by the function:

(a -> F b) -> (F a -> F b)

binds a function through an environment F

Functor vs Monad

Functor vs Monad

(a -> b) -> (F a -> F b)
(a -> F b) -> (F a -> F b)

Monad Haskell

Monad using Haskell syntax

class Monad f where
bind :: (a -> f b) -> (f a -> f b)

Monad Examples

Examples of Monad instances
The list monad takes the cartesian product:

(a -> [] b) -> ([] a -> [] b)
(a -> [b]) -> ([a] -> [b])

The maybe monad threads the possible Just value:

(a -> Maybe b) -> (Maybe a -> Maybe b)

Monad Examples in Haskell

Examples of Monad instances using Haskell syntax

instance Monad [] where
bind f =

foldr ((++) . f) []

instance Monad Maybe where
bind f =

maybe Nothing f

instance Monad ((->) t) where
bind f g =

\x -> f (g x) x

Combining Functors

Mapping on a [] of Maybe
Suppose I glue two functors, [] and Maybe, together:

value :: [Maybe a]

and I want to map a function f :: a -> b:

result :: [Maybe b]
result = fmap (fmap f) value

Functor Composition

Mapping on a (f of g)

\f -> fmap (fmap f) ::
(Functor f, Functor g) =>
(a -> b) -> f (g a) -> f (g b)

Functor Composition

Mapping on a (f of g)
In fact, I can do this for any two functors:

value :: f (g a)

to map a function f :: a -> b:

result :: f (g b)
result = fmap (fmap f) value

Functor Composition

In other words
If f and g are functors, then (f of g) is a functor:

data Compose f g x = Compose (f (g x))

instance (Functor f, Functor g) =>
Functor (Compose f g) where

fmap f (Compose z) =
Compose (fmap (fmap f) z)

Functors Compose

The composition of two arbitrary functors makes a new functor.
In brief, we say that functors compose.

Combining Monads

Binding on a [] of Maybe
Suppose I glue two monads, [] and Maybe, together:

value :: [Maybe a]

and I want to bind a function f :: a -> [Maybe b]:

result :: [Maybe b]
result = bind (maybe (unit Nothing) f) value

Combining Two Monads

Binding on a [] of Maybe
We called bind on a list

result = bind (maybe (unit Nothing) f) value
^ ^

but we destructured the Maybe using Maybe-specific calls.

Composing Monads

If f and g are monads, then is (f of g) a monad?

Can we generalise?

instance (Monad f, Monad g) =>
Monad (Compose f g) where

bind =
error "???"

Composing Monads

In other words . . .
Can we write a function with this type?

bindComp ::
(Monad f, Monad g) =>
(a -> f (g b))
-> f (g a)
-> f (g b)

Composing Monads

No. Try it.
There are several ways to tie your knickers in a knot, but they will
always be tangled.

Composing Monads

However, we can bind on (f of Maybe) for any monad f.

result ::
Monad f =>
(a -> f (Maybe b))
-> f (Maybe a)
-> f (Maybe b)

result =
bind (maybe (unit Nothing) f) value

Maybe Monad Transformer

And so the Maybe monad transformer comes to be.

data MaybeT f a = MaybeT {
maybeT :: f (Maybe a)

}

instance Monad f => Monad (MaybeT f) where
bind f (MaybeT x) =

MaybeT
(bind

(maybe (unit Nothing)
(maybeT . f)) x

)

Maybe Monad Transformer

The Maybe monad transformer
provides the construction of the monad for (f of Maybe) for an
arbitrary monad f. Its behaviour combines the individual monads of
Maybe then f, in that order.

This transformer exists
precisely because Monads do not compose in general.

Maybe Monad Transformer

Example [] on Maybe

m1 :: MaybeT [] Integer
m1 = MaybeT [Just 1, Just 2, Just 30]

f1 :: Integer -> MaybeT [] Integer
f1 n =

MaybeT
[

Just n
, if n < 10 then Just (n * 50) else Nothing
]

> maybeT (bind f1 m1)
[Just 1,Just 50, Just 2,Just 100, Just 30, Nothing]

Maybe Monad Transformer

Example ((->) t) on Maybe

m2 :: MaybeT ((->) Integer) String
m2 = MaybeT (\x ->

if even x
then Just (show (x * 10))
else Nothing)

f2 :: String -> MaybeT ((->) Integer) String
f2 s = MaybeT (\n ->

if n < 100
then Just (show n ++ s)
else Nothing)

> map (maybeT (bind f2 m2)) [3, 4, 700]
[Nothing ,Just "440" , Nothing]

More Monad Transformers

MaybeT f a = f (Maybe a)

EitherT f a b = f (Either a b)

ReaderT f a b = a -> f b

StateT f s a = a -> f (a, s)

Each Monad Transformer exists
because monads do not compose in general

Transformers

Functor Transformers do not exist
because functors compose so what’s the point?

Transformers

Actually, you’ll find all these things compose:
Functor
Apply
Applicative
Alt
Alternative
Foldable
Foldable1
Traversable
Traversable1

Transformers

These do not compose:
Monad
Bind
Comonad
Cobind

it’s a useful exercise to try it anyway!

Questions

?

