
Zippers

and algebra and stuff

FunctionalConf, 2019

Tony Morris

QFPL

http://qfpl.io/

The term zipper is a colloquial that is used to describe n-hole
contexts into a data structure; most often n=1.

That is, a data structure that has a hole or pointer focussed on a
specific element.

An important property of a zipper is an ability to efficiently
traverse to and modify neighbours.

Loosely speaking
Take any data structure and walk to any element (1-hole) on it.

Now look around you. What do you see?

For example
Here is the list one to ten

[1,2,3,4,5,6,7,8,9,10]

For example
Here is a depiction of a physical list one to ten

For example
Let’s move to the element containing 7

List zipper
and look around us

([6,5,4,3,2,1], 7, [8,9,10])

List zipper
and look around us

([6,5,4,3,2,1], 7, [8,9,10])

List zipper
We can easily move to our neighbours in O(1) time

listz =
([6 ,5 ,4 ,3 ,2 ,1] , 7, [8 ,9 ,10])

moveLeft listz =
([5 ,4 ,3 ,2 ,1] , 6, [7 ,8 ,9 ,10])

List zipper
The zipper for [a] is ([a], a, [a])

data ListZipper a =
ListZipper [a] a [a]

List zipper
Some useful operations on a list zipper:

moveLeft/Right :: ListZipper a -> Maybe (ListZipper a)

findLeft/Right :: (a -> Bool) -> ListZipper a -> Maybe (ListZipper a)

modify :: (a -> a) -> ListZipper a -> ListZipper a

delete :: ListZipper a -> Maybe (ListZipper a)

Multi-way Tree
How about a multi-way tree?

data Tree a =
Tree a [Tree a]

What if we stand on an element and look around?

leftSiblings :: ?

leftSiblings :: [Tree a]

rightSiblings :: [Tree a]

focus :: ?

focus :: a

children :: ?

children :: [Tree a]

parents :: ?

parents :: [([Tree a], a, [Tree a])]

The zipper for a multi-way tree is

data TreeZipper a =
TreeZipper

[Tree a] -- left siblings
[Tree a] -- right siblings
a -- focus
[Tree a] -- children
[([Tree a], a, [Tree a])] -- parents

Tree zipper
Some useful operations on a tree zipper:

moveParent/Child :: TreeZipper a -> Maybe (TreeZipper a)

moveLeft/Right :: TreeZipper a -> Maybe (TreeZipper a)

find :: (a -> Bool) -> TreeZipper a -> Maybe (TreeZipper a)

all :: (a -> Bool) -> TreeZipper a -> Bool

modify :: (a -> a) -> TreeZipper a -> TreeZipper a

modifyTree :: (Tree a -> Tree a) -> TreeZipper a -> TreeZipper a

insertSiblingLeft/Right :: Tree a -> TreeZipper a -> TreeZipper a

Other zippers
Some other data structures have useful zippers:

JSON
CSV
ASN.1
text editors
Pilot logbook
many more!

Speaking of useful operations. . .

Comonad is
Any functor F supporting:

extract :: F a -> a

duplicate :: F a -> F (F a)

satisfying laws of identity and associativity

Comonad is
Any functor F supporting:

extract :: F a -> a

duplicate :: F a -> F (F a)

satisfying laws of identity and associativity

Comonad is
Any functor F supporting:

extract :: F a -> a

duplicate :: F a -> F (F a)

satisfying laws of identity and associativity

Does a ListZipper satisfy the requirements for a comonad?

Yes
fmap :: (a -> b) -> ListZipper a -> ListZipper b
extract :: ListZipper x -> x
duplicate :: ListZipper w -> ListZipper (ListZipper w)

What about a TreeZipper?

Yes
fmap :: (a -> b) -> TreeZipper a -> TreeZipper b
extract :: TreeZipper x -> x
duplicate :: TreeZipper w -> TreeZipper (TreeZipper w)

Actually
All zippers are comonads (Uustalu, 2005)

Here is a utility function

-- Do any (max: 2) adjacent focii of the list zipper
-- satisfy the given predicate ?
adjacentFociiSatisfy ::

(a -> Bool)
-> ListZipper a
-> Bool

adjacentFociiSatisfy p z =
let mvs k = any p (focus <$> k z)
in mvs moveLeft || mvs moveRight

Requirement
Find all zippers with a focus adjacent to a given value

Find all zippers with a focus adjacent to a given value
duplicate
we now have ListZipper (ListZipper a)

toList
we now have [ListZipper a]

filter with adjacentFociiSatisfy
we still have [ListZipper a]

Find all zippers with a focus adjacent to a given value
duplicate
we now have ListZipper (ListZipper a)

toList
we now have [ListZipper a]

filter with adjacentFociiSatisfy
we still have [ListZipper a]

Find all zippers with a focus adjacent to a given value
duplicate
we now have ListZipper (ListZipper a)

toList
we now have [ListZipper a]

filter with adjacentFociiSatisfy
we still have [ListZipper a]

allWithAdjacent

allWithAdjacent ::
Eq a =>
a
-> ListZipper a
-> [ListZipper a]

allWithAdjacent n =
filter (adjacentFociiSatisfy (==n)) . toList . duplicate

allWithAdjacent

> allWithAdjacent 3 (ListZipper [3 ,2 ,1] 4 [5..10])
[

ListZipper {
lefts = [1]

, focus = 2
, rights = [3 ,4 ,5 ,6 ,7 ,8 ,9 ,10]
}

, ListZipper {
lefts = [3 ,2 ,1]

, focus = 4
, rights = [5 ,6 ,7 ,8 ,9 ,10]
}

]

allWithAdjacent

> allWithAdjacent 3 (ListZipper [3 ,2 ,1] 4 [7 ,2 ,6 ,3])
[

ListZipper {
lefts = [1]

, focus = 2
, rights = [3 ,4 ,7 ,2 ,6 ,3]
}

, ListZipper {
lefts = [3 ,2 ,1]

, focus = 4
, rights = [7 ,2 ,6 ,3]
}

, ListZipper {
lefts = [2 ,7 ,4 ,3 ,2 ,1]

, focus = 6
, rights = [3]
}

]

Who’s wanted that in their text editor before?

What were you editing? JSON? Your pilot logbook?

What about a programming language?

other uses of zippers

OK, but. . .
Why zipper?
If I wanted to modify the element of a tree, why wouldn’t I use a
lens (or traversal)?

OK, but. . .
immediateChildren :: Traversal (Tree a) (Tree a)
focus :: Lens (Tree a) a

Zipper vs Lens
While lens gives you nice compositional properties, zipper does

context-dependent updates

Zipper vs Lens
lens

view one hole in a data structure, then operate on it

traversal
view many holes in a data structure, then operate on it

zipper
view one hole in a data structure, then depend on it to
move efficiently to another hole (and so on)

Zipper vs Lens
lens

view and operate on y in (x, y, z)

traversal
view and operate on all of the y in (x, y, z, y, [y])

zipper
view and operate on a specific y in (y, y, y) and de-
pending on the operation outcome, move to a different y
(and so on)

Algebra
Algebraic Data Types can be thought of in terms of regular
algebraic equations

Some examples include
sum types
Either A B or “A or B” corresponds to the equation A + B

product types
(A, B) or “A and B” corresponds to the equation A * B

exponentiation
A -> B corresponds to the equation BA

unit
given data Unit = Unit,
the Unit data type corresponds to the value 1

void
given data Void,
the Void data type corresponds to the value 0

Some examples include
sum types
Either A B or “A or B” corresponds to the equation A + B

product types
(A, B) or “A and B” corresponds to the equation A * B

exponentiation
A -> B corresponds to the equation BA

unit
given data Unit = Unit,
the Unit data type corresponds to the value 1

void
given data Void,
the Void data type corresponds to the value 0

Some examples include
sum types
Either A B or “A or B” corresponds to the equation A + B

product types
(A, B) or “A and B” corresponds to the equation A * B

exponentiation
A -> B corresponds to the equation BA

unit
given data Unit = Unit,
the Unit data type corresponds to the value 1

void
given data Void,
the Void data type corresponds to the value 0

Some examples include
sum types
Either A B or “A or B” corresponds to the equation A + B

product types
(A, B) or “A and B” corresponds to the equation A * B

exponentiation
A -> B corresponds to the equation BA

unit
given data Unit = Unit,
the Unit data type corresponds to the value 1

void
given data Void,
the Void data type corresponds to the value 0

Some examples include
sum types
Either A B or “A or B” corresponds to the equation A + B

product types
(A, B) or “A and B” corresponds to the equation A * B

exponentiation
A -> B corresponds to the equation BA

unit
given data Unit = Unit,
the Unit data type corresponds to the value 1

void
given data Void,
the Void data type corresponds to the value 0

Let’s look at Bool

data Bool = True | False

The True constructor has no arguments, which is equivalent
to carrying Unit

The False constructor has no arguments, which is equivalent
to carrying Unit

The whole data type carries 1 or 1

Bool ~ 1 + 1 ~ 2

Let’s look at Bool

data Bool = True | False

The True constructor has no arguments, which is equivalent
to carrying Unit

The False constructor has no arguments, which is equivalent
to carrying Unit

The whole data type carries 1 or 1

Bool ~ 1 + 1 ~ 2

How about Maybe a

data Maybe a = Nothing | Just a

The Nothing constructor has no arguments, which is
equivalent to carrying Unit

The Just constructor has an argument a

The whole data type carries 1 or a

Maybe a ~ 1 + a

How about Maybe a

data Maybe a = Nothing | Just a

The Nothing constructor has no arguments, which is
equivalent to carrying Unit

The Just constructor has an argument a

The whole data type carries 1 or a

Maybe a ~ 1 + a

Another one Either Void a

The Left constructor carries 0

The Right constructor has an argument a

The whole data type carries 0 or a

Either Void a ~ 0 + a ~ a

Another one Either Void a

The Left constructor carries 0

The Right constructor has an argument a

The whole data type carries 0 or a

Either Void a ~ 0 + a ~ a

and another (Void, a)

The whole data type carries 0 and a

(Void, a) ~ 0 * a ~ 0

and another (Void, a)

The whole data type carries 0 and a

(Void, a) ~ 0 * a ~ 0

lots of Bool
(Bool, Bool)

Either Bool Bool

Bool -> Bool

2 * 2

2 + 2

22

These are all 4

lots of Bool
(Bool, Bool)

Either Bool Bool

Bool -> Bool

2 * 2

2 + 2

22

These are all 4

lots of Bool
(Bool, Bool)

Either Bool Bool

Bool -> Bool

2 * 2

2 + 2

22

These are all 4

Inhabitants
The resulting algebraic equation gives us the number of
inhabitants.
Or, the number of values with that type.

Inhabitants
Maybe (Bool -> Maybe Bool)

has 1 + (1 + 2)2 inhabitants
9 inhabitants
(Either Bool (Maybe Bool), Bool, (Unit, Bool), Either Void Bool)

has (2 + (1 + 2)) * 2 * (1 * 2) * (0 + 2) inhabitants
40

Inhabitants
Maybe (Bool -> Maybe Bool)

has 1 + (1 + 2)2 inhabitants
9 inhabitants
(Either Bool (Maybe Bool), Bool, (Unit, Bool), Either Void Bool)

has (2 + (1 + 2)) * 2 * (1 * 2) * (0 + 2) inhabitants
40

Algebraically
What is [a]?

Lists
[a] is either zero a or one a or two a . . .
a0 + a1 + a2 . . .
using algebraic rules, this simplifies to 1 + a * [a]

1 or (a and [a])

The [] (carrying Unit) or (:) constructor

Lists
[a] is either zero a or one a or two a . . .
a0 + a1 + a2 . . .
using algebraic rules, this simplifies to 1 + a * [a]

1 or (a and [a])

The [] (carrying Unit) or (:) constructor

Lists
[a] is either zero a or one a or two a . . .
a0 + a1 + a2 . . .
using algebraic rules, this simplifies to 1 + a * [a]

1 or (a and [a])

The [] (carrying Unit) or (:) constructor

Remember calculus?

Me neither :)

Here is a data type:
Either x (x, x)

Algebraically:
x + (x * x)

Differentiate
∂

∂x (x + (x * x))

∂
∂x (x + (x * x))

(sum rule)

= ∂
∂x (x + ∂

∂x (x * x))
(power rule, line rule)

= 1 + (2 * x)

= Maybe (Bool, x)

∴
∂

∂x Either x (x, x)

= Maybe (Bool, x)

∂
∂x Either x (x, x)

We’ll do another one
(Either x x, Either x x)

Algebraically:
(x + x) * (x + x)

Differentiate
∂

∂x ((x + x) * (x + x))

∂
∂x ((x + x) * (x + x))

= ∂
∂x 4 * x2

(power rule)

= 4 * ∂
∂x x2

(power rule)

= 4 * 2 * x

= 8 * x

∴
∂

∂x (Either x x, Either x x)

= (Maybe Bool -> Bool, x)

A simpler one
(x, x, x)

Algebraically:
x * x * x

Differentiate
∂

∂x x * x * x

∂
∂x x * x * x

= ∂
∂x x3

(power rule)

= 3 * x2

∴
∂

∂x (x, x, x)

= (Maybe Bool, x, x)

Summary
∂

∂x Either x (x, x) = Maybe (Bool, x)
∂

∂x (Either x x, Either x x) = (Maybe Bool -> Bool, x)
∂

∂x (x, x, x) = (Maybe Bool, x, x)

Insight
The derivative of any data structure, is its zipper![AAMG05] a

awithout the 1-hole context value

Let’s do list
List a = 1 + a + a2 + a3 + . . .

List

List a = 1 + a + a2 + a3 + . . .

let K a = a + a2 + a3 + . . .
List a = 1 + K a
multiply list by a

K a = a * List a

∴ List a = 1 + a * List a
this makes sense if we think of List in terms of its constructors

List

List a = 1 + a * List a

subtract (a * List a) both sides

List a - (a * List a) = 1
multiply List a by 1

(1 * List a) - (a * List a) = 1
apply distributive law of multiplication

List a * (1 - a) = 1
divide both sides by 1 - a

List a = 1 / (1 - a)

apply exponent rule

∴ List a = (1 - a)-1

List

List a = (1 - a)-1

let u = 1 - a
apply chain rule
∂
∂a (1 - a)-1 = ∂

∂u u-1 * ∂
∂a 1 - a

differentiate u-1

∂
∂u u-1 = -1 / u2

differentiate 1 - a

∂
∂a 1 - a = -1

∴ ∂
∂a (1 - a)-1 = (-1 / u2) * -1

List

∂
∂a (1 - a)-1 = (-1 / u2) * -1

substitute back u = 1 - a

∂
∂a (1 - a)-1 = (-1 / (1 - a)2) * -1
simplify by multiplying right side by -1

∂
∂a (1 - a)-1 = 1 / (1 - a)2

apply exponent rule
∂
∂a (1 - a)-1 = (1 / 1 - a)2

∂
∂a (1 - a)-1 = ((1 - a)-1)2

∴ The derivative of a List is a pair of List

List derivative
-- 1 + (a * List a)
List a ~ Nil | Cons a (List a)

-- (1 + (a * List a)) * (1 + (a * List a))
ListDerivative ~ (List a, List a)

-- add the hole back to the derivative
-- (1 + (a * List a)) * a * (1 + (a * List a))
ListZipper ~ (List a, a, List a)

data ListZipper a = ListZipper [a] a [a]

unzip

The End

References

Michael Abbott, Thorsten Altenkirch, Conor McBride, and
Neil Ghani, ∂ for data: Differentiating data structures,
Fundamenta Informaticae 65 (2005), no. 1-2, 1–28.

