
Trees That Grow

BFPG, January 2019

Tony Morris

Have you ever had this problem?

You are writing a data type, such as data Aircraft

So you decide that an Aircraft is the product of

Manufacturer

Designation

Registration

Category

and a Category is the sum of

Aeroplane

Helicopter

Gyroplane

Airship

. . .

and on the Aeroplane constructor you have the product of

NonEmpty Propulsion

. . .

and a Propulsion is the product of

Engine

MountPosition

and an Engine is the product of

Manufacturer

Designation

EngineType

and an EngineType is the sum of

ICE

Jet

Electric

Rocket

and an ICE is the product of

AirInduction

FuelInduction

Ignition

ICEType

and etc etc

You write all your code in terms of this Aircraft data type

Then you create a database schema and store aircraft in it

. . . and then . . .

Project Manager: “can we just add an image to internal
combustion engines?”

oh no

Your data type tree needs to grow

Trees That Grow is an approach to this extensibility

Trees That Grow

data ICE =
ICE

AirInduction
FuelInduction
Ignition
ICEType

Trees That Grow
but we came prepared with Trees That (will probably) Grow

Trees That Grow

type family XICE x

data ICE_ x =
ICE_

AirInduction
FuelInduction
Ignition
ICEType
(XICE x)

type instance XICE () = ()
type ICE = ICE_ ()

Trees That Grow
pattern-matching becomes a pain in the undecorated case:
case ice of

ICE_ air fuel ign typ () ->

Trees That Grow
so we write a pattern-synonym:
pattern ICE air fuel ign typ <-

ICE_ air fuel ign typ _
where ICE air fuel ign typ =

ICE_ air fuel ign typ ()

Trees That Grow
using the pattern-synonym:
case ice of

ICE air fuel ign typ ->

Trees That Grow
We can add an image to data ICE_

type instance XICE Image = Image
type ICE_Image = ICE Image

Trees That Grow
We can also add fields to sum types:
data Either a b =

Left a
| Right b

Trees That Grow
Either that grows
type family XEither x

data Either_ x a b =
Left_ a (XEither x)
| Right_ b (XEither x)

type instance XEither () = ()
type Either = Either_ ()

Trees That Grow
and add pattern-synonyms:
pattern Left a <- Left_ a _

where Left a = Left_ a ()

pattern Right a <- Right_ a _
where Right a = Right_ a ()

Trees That Grow
Note that there exists
xeither :: Lens (Either_ x a b) (XEither x)

data Either_ x a b =
Left_ a (XEither x)
| Right_ b (XEither x)

Trees That Grow
We can add constructors to sum types:
data These a b =

This a
| That b
| Both a b

Trees That Grow
Theses that grow
type family XThese x

data These_ x a b =
This_ a
| That_ b
| Both_ a b
| XThese_ (XThese x)

type instance XThese Void = Void
type These = These_ Void

Trees That Grow
We could add pattern-synonyms, like before

Trees That Grow
We could also write the prisms
This :: Prism (These x a b) a
That :: Prism (These x a b) b
Both :: Prism (These x a b) (a, b)
XThese :: Prism (These x a b) (XThese x)

Trees That Grow extends to:[NPJ16]
existential types
GADTs

Analysis
This is my opinion of Trees That Grow

Alternatives
We already know that classy lenses (and prisms) work toward
resolving this issue

Alternatives

class HasImage a where
image :: Lens a Image

instance HasImage ICE_Image where

Alternatives
This requires creating a new data type:

data ICE_Image =
ICE_Image

ICE
Image

One problem
One problem that I found with TTG is that the type-variable
bubbles up the data type tree

One problem
My Propulsion data type has 18 type-variables

One problem
I start running out of names at 26

I didn’t get to Aircraft (which is not at the top of the tree)

Therefore
I have come to prefer classy lenses and prisms.

Interesting Note
GHC plans to utilise TTG for its syntax tree, to achieve
extensibility.

?

References

Shayan Najd and Simon Peyton-Jones, Trees that grow. jucs
(2016), 2016.

